NOTE: This page was developed using G*Power version 3.0.10. You

can download the current version of G*Power from

http://www.psycho.uni-duesseldorf.de/abteilungen/aap/gpower3/ . You

can also find help files, the manual and the user guide on this website.

## Introduction

Power analysis is the name given to the process of determining the sample

size for a research study. The technical definition of power is that it is the

probability of detecting an effect when it exists. Many students think

that there is a simple formula for determining sample size for every research

situation. However, the reality is that there are many research situations that

are so complex that they almost defy rational power analysis. In most cases,

power analysis involves a number of simplifying assumptions, in order to make

the problem tractable, and running the analyses numerous times with different

variations to cover all of the contingencies.

In this page we will try to illustrate how to do a power analysis for a test

of two independent proportions, i.e., the response variable has two levels and

the predictor variable also has two levels. Instead of analyzing these data

using a test of independent proportions, we could compute a chi-square statistic

in a 2×2 contingency table or run a simple logistic regression analysis. These

three analyses yield the same results and would require the same sample sizes to

test effects.

## Description of the experiment

It is known that a certain type of skin lesion will develop into cancer in

30% of patients if left untreated. There is a drug on the market that will

reduce the probability of cancer developing to 20%. . A pharmaceutical company is

developing a new drug to treat skin lesions, but it will only be worthwhile to do

so if the new drug reduces the probability of developing cancer to 15%

or better. The pharmaceutical company

plans to do a study with patients randomly

assigned to two groups, the control (untreated) group and the treatment group.

The company wants to know how many subjects will be needed to test a difference

in proportions of .15 with a power of .8 at alpha equal to .05.

## The power analysis

G*Power is easily capable of determining the sample size needed for tests of

two independent proportions as well as for tests of means. To begin, the

program should be set to the z family of tests, to a test of proportions, and to

perform the ‘A Priori’ power analysis necessary to identify sample size.

From there, simply input the necessary parameters. We are given the

power, significance level, and the values of the two proportions, and we can

assume that we want equally sized sample groups (an allocation ratio of 1).

Pressing ‘Calculate’ produces the desired results along with the

critical z (the number of standard deviations from

the null mean where an observation becomes statistically significant) and the

test’s actual power. In addition, a graphical representation of the test

is shown, with distribution of the test statistics, given difference between proportions (i.e. p2 – p1 = 0.15 – 0.3 = -0.15) as a dotted blue line and distribution of the test statistics, given difference between proportions equal to zero represented by a solid red line. A red shaded

area delineating the probability of a type 1 error, a blue area the type 2

error, and a pair of green lines demarcating the critical points z.

Each group will require 121 people.

This is all well and good, but a two-sided test doesn’t make much sense in

this situation. We want to test for a drug that reduces the probability of

cancer not for one that increases the probability. In this case we might

want to use a one-tail test, adjustable easily enough by changing the input in ‘Tail(s)’.

G*Power indicates that we need to use 95 subjects in each

group to find a change in probability of .15 for a power of .8 when alpha equals

.05.

Just as a check, let’s run the analysis specifying each of the two sample

sizes. This is accomplished by changing the type of power analysis from

the ‘A Priori’ investigation of sample size to the ‘Post Hoc’ power calculation. The solved-for sample sizes should be automatically tabulated.

Now, because we believe that we know a lot about the incidence of cancer in

the untreated group, we would like to make the control group half as large as the

treatment group. We can easily do this by adjusting the allocation ratio input. As we desire the control group (group 1) to be half as large as the treatment

group (group 2), N2/N1 should equal 2.

With this unbalanced design we have an estimated power of 0.800822, which the

company deems acceptable.

For more information on power analysis, please visit our

Introduction to Power Analysis

seminar.